Silencing of integrated human papillomavirus type 18 oncogene transcription in cells expressing SerpinB2.
نویسندگان
چکیده
The serine protease inhibitor SerpinB2 (PAI-2), a major product of differentiating squamous epithelial cells, has recently been shown to bind and protect the retinoblastoma protein (Rb) from degradation. In human papillomavirus type 18 (HPV-18)-transformed epithelial cells the expression of the E6 and E7 oncoproteins is controlled by the HPV-18 upstream regulatory region (URR). Here we illustrate that PAI-2 expression in the HPV-18-transformed cervical carcinoma line HeLa resulted in the restoration of Rb expression, which led to the functional silencing of transcription from the HPV-18 URR. This caused loss of E7 protein expression and restoration of multiple E6- and E7-targeted host proteins, including p53, c-Myc, and c-Jun. Rb expression emerged as sufficient for the transcriptional repression of the URR, with repression mediated via the C/EBPbeta-YY1 binding site (URR 7709 to 7719). In contrast to HeLa cells, where the C/EBPbeta-YY1 dimer binds this site, in PAI-2- and/or Rb-expressing cells the site was occupied by the dominant-negative C/EBPbeta isoform liver-enriched transcriptional inhibitory protein (LIP). PAI-2 expression thus has a potent suppressive effect on HPV-18 oncogene transcription mediated by Rb and LIP, a finding with potential implications for prognosis and treatment of HPV-transformed lesions.
منابع مشابه
Tetrasomy is induced by human papillomavirus type 18 E7 gene expression in keratinocyte raft cultures.
We have demonstrated previously that oncogenic human papillomaviruses (HPVs) induce basal cell tetrasomy in low-grade squamous intraepithelial lesions of the cervix. To identify HPV genes and growth conditions involved in this process, we analyzed: (a) organotypic raft cultures of primary human keratinocytes transfected with whole HPV-18 genomes; and (b) organotypic raft cultures acutely infect...
متن کاملHPV-18 transformed cells fail to arrest in G1 in response to quercetin treatment.
Previous work with primary human keratinocytes demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 with concomitant elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the human papillomavirus type 16 (HPV-16) E6 and E7 oncoproteins, under transcriptional control of a heterologous promoter, i...
متن کاملBrd4 links chromatin targeting to HPV transcriptional silencing.
The E2 protein encoded by human papillomaviruses (HPVs) inhibits expression of the viral E6 oncoprotein, which, in turn, regulates p53 target gene transcription. To identify cellular proteins involved in E2-mediated transcriptional repression, we isolated an E2 complex from human cells conditionally expressing HPV-11 E2. Surprisingly, the double bromodomain-containing protein Brd4, which is imp...
متن کاملHuman papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes.
Replication-competent adenoviruses are being investigated as potential anticancer agents. Exclusive virus replication in cancer cells has been proposed as a safety trait to be considered in the design of oncolytic adenoviruses. From this perspective, we have investigated several adenovirus mutants for their potential to conditionally replicate and promote the killing of cells expressing human p...
متن کاملA systems biology analysis of the changes in gene expression via silencing of HPV-18 E1 expression in HeLa cells
Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 79 7 شماره
صفحات -
تاریخ انتشار 2005